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Recurrent Neural Network (RNN) 

1. Data Preprocessing 

a. Dataset used  

The dataset, Large Movie Review Dataset, is for binary sentiment classification. In our 

experiment, to save training time, we only used 2780 records for both training and 

testing. We further split the 2780 training samples into a 70% training set and a 30% 

validation set to select the model with the best performance. Finally, Figure 1 shows 

the dataset splitting results.  

 

Figure1. Dataset Splitting 

 

b. Tokenization using spaCy  

To enable our RNN to learn the sentences at word-level, we tokenize the sentences into 

smaller units called tokens using a tokenizer, en_core_web_sm, in spaCy library. 

 

c. Build the vocabulary 

To enable our model to take in the tokens, we give each token a unique one-hot vector. 

 

For TEXT INPUT, 

To reduce the number of one-hot-vectors, we only keep the most frequent 25,000 words 

and replace other encoding vectors with an unknown token denoted by <unk>. 

Additionally, to keep all sentences in a batch to have the same size in order to feed to 

the model in one run, we use an additional token <pad> for padding. Hence, the total 

number of tokens for text input is 25,002. 

 

For LABEL, 

Since we only have two labels, positive and negative, we use 0 to represent negative 

labels and 1 to represent positive labels.  

 

d. BucketIterator 

We create BucketIterators to hold a batch of samples (batch size =64) to enable parallel 

processing. BucketIterator ensures sentences of similar length are grouped into the 

same batch, significantly reducing the padding efforts. 



2. Model Architecture 

Layer Function 

Embedding layer Turn sparse one-hot vectors into dense 

vectors for dimensionality reduction. 

Words of similar meanings are closer in 

the dense vector space. 

RNN layer Based on the previous hidden state h(t-1) 

and the current word’s dense vector, 

generate the current hidden state h(t). 

Fully-connect linear layer Take in the final hidden state and output 

the predicted possibility of positive class. 

Table 1. Three Layers and Corresponding Functions 

 

 
Figure 2. Overall Architecture of RNN 



3. Model Training 

a. SGD optimizer 

stochastic gradient descent (SGD) optimizer with a learning rate of 0.001 is used to 

update all the parameters based on the gradients of the loss function with respect to the 

parameters.  

 

b. Binary cross entropy with logits 

Binary cross entropy with logits is adopted as the loss function. 

“nn.BCEWithLogitsLoss()” first applies a sigmoid function to the raw output of RNN 

and then calculates the loss using binary cross entropy. 

 

The objective of the sigmoid function is to convert the unbound last hidden state of 

RNN to a value between 0 and 1 (referring to Figure 3) as the predicted possibility of 

the positive class. 

 

  

Figure 3. Curve for Sigmoid 

 

The formula for cross-entropy loss is shown in Figure 4, where y represents the actual 

label (0 or 1), and p(y) represents the predicted possibility of the positive class. 

 

 

Figure 4. BCE Loss Formula 

 

The main idea of cross-entropy loss is to penalize the predicted probability that deviates 

from the actual label. When the true label y = 1, the loss term is -log(p(y)) as shown on 

the left of Figure 5. The model will impose a high penalty on those “wrong predictions” 

with p(y) close to 0 and a small penalty on those “correct predictions” with p(y) close 

to 1. When the true label y = 0, the loss term is -log(1-p(y)) as shown on the right of 

Figure 5. The model will impose a high penalty on those “wrong predictions” with p(y) 

close to 1 and a small penalty on those “correct predictions” with p(y) close to 0. 

 



 

Figure 5. BCE Loss for y = 1 and y = 0 

 

4. Model Evaluation and Modification 

a. Original architecture 

Observation: From Figure 6 and 7, the performance of the original model is very poor, 

with training, validation, and testing accuracy around 50%, like random guessing. 

 

 

Figure 6. Training Results for the Original RNN Model  

 

Figure 7. Testing Results for the Original RNN Model  

 



b. Add one more RNN layer 

As shown in Figure 8, we add one more RNN layer. 

 

Figure 8. Add one more RNN Layer 

 

Observation: From Figures 9 and 10, the performance of the revised model with two 

RNN layers is still unacceptable. Theoretically, an additional RNN layer will contribute 

to generating a more abstract representation of the sentences to capture the long-range 

dependencies and extract more nuanced features. The reason why the performance 

doesn’t improve is discussed in section e (conclusion). 

 

 

Figure 9. Training Results for RNN with Two Layers 

 

 

Figure 10. Testing Results for RNN with Two Layers 

 



c. Change the embedding dimension of the RNN 

As shown in Figures 11 and 12, we increase the embedding dimension (the dimension 

of the dense vectors to be fed into the RNN) from 100 to 200 and 1000. 

 

 
Figure 11. Increase the Embedding Dimension to 200 

 

 
Figure 12. Increase the Embedding Dimension to 1000 

 

Observation: From Figure 13, 14, 15, 16, the performance of the revised models with 

increased embedding dimension is still unacceptable. Theoretically, more embedding 

dimension will provide richer semantic features to increase the performance. The 

reason why the performance doesn’t improve is discussed in section e (conclusion). 

 

 
Figure 13. Training Results for RNN with Embedding Dimension = 200 

 

 

Figure 14. Testing Results for RNN with Embedding Dimension = 200 



 

Figure 15. Training Results for RNN with Embedding Dimension = 1000 

 

 

Figure 16. Testing Results for RNN with Embedding Dimension = 1000 

 

d. Reduce the dimension of the word embeddings (vocabulary size) 

As shown in Figures 17 and 18, we reduce the dimension of the word embeddings 

(vocabulary size) from 25,000 to 20,000 and 10,000. 

 

 
Figure 17. Reduce the Dimension of Word Embeddings to 20,000 

 

 
Figure 18. Reduce the dimension of Word Embeddings to 10,000 

 

Observation: From Figure 19, 20, 21, 22, the performance of the revised models with 

reduced dimension of word embeddings are unacceptable. The reason why the 

performance is poor is discussed in section e (conclusion). 

 



 

Figure 19. Training Results for RNN with Reduced Vocabulary Size = 20000 

 

 

Figure 20. Testing Results for RNN with Reduced Vocabulary Size = 20000 

 

 
Figure 21. Training Results for RNN with Reduced Vocabulary Size = 10000 

 

 

Figure 22. Testing Results for RNN with Reduced Vocabulary Size = 10000 



e. Conclusion 

From the above three modifications and results, the observation is that no matter how 

we fine-tune the model, the performance remains poor, with an accuracy of around 50%. 

It seems that the model learns nothing but makes random guesses. 

 

One potential reason is that the basic RNN’s capacity to do sentiment analysis is limited. 

For example, RNNs suffer from gradient vanishing problems and thus make it 

challenging to capture the long-term dependencies. We should try other more powerful 

models like LSTM to gain better performance. 

 

 

 

 

 

 

 

Long Short-term Memory (LSTM) 

Only the key improvements over the RNN model are highlighted in the following part. 

 

1. Model Architecture 

a. Pack the sequences 

To enable the LSTM to process only the non-padded elements, we pack the padded 

sequences at the output of the embedding model before forwarding them to the LSTM, 

thus optimizing the memory and computation resources.  

 

b. Bidirectional Multi-Layer LSTM 

 

Layer Function 

Embedding layer Turn sparse one-hot vectors into dense 

vectors for dimensionality reduction. 

Further, pack the padded sequences to 

ignore the paddings. 

Bidirectional 2-layer LSTM Take in packed embeddings and output 

the concatenation of the last forward and 

backward hidden states. 

Fully-connect linear layer Take in the concatenated hidden state and 

output the predicted probability of 

positive class. 

Table 2. Three Layers and Corresponding Functions for LSTM 

 



 

Figure 23. Bidirectional 2-Layer LSTM 

 

c. Dropout 

To prevent overfitting, we adopt a regularization technique called dropout. The main 

idea is to set the outputs of some units to zeros with a probability (0.5 in our experiment). 

By doing this, the network will not rely on a particular group of units too heavily and 

thus gain stronger generalization ability. 

 

In our experiment, we use three dropouts, respectively, at the output of the embedding 

model, between two LSTM layers, and at the concatenated last hidden state of the 

bidirectional LSTM. 

 



2. Model Training 

a. Adam optimizer 

We use an Adam optimizer to update the parameters rather than SGD. Unlike SGD, 

which updates all parameters with a fixed learning rate, Adam gives a lower learning 

rate for frequently-updated parameters and a higher for infrequently-updated 

parameters. By introducing this adaptive learning rate, Adam is more robust to the 

hyperparameter and more efficient than SGD.  

 

3. Model Evaluation and Modification 

a. Original architecture 

Observation: From Figure 24 and 25, the bidirectional 2-layer LSTM significantly 

outperforms the previous RNN, with testing accuracy increasing from 49.68% (RNN) 

to 67.72% (LSTM). 

 

 

Figure 24. Training Results for the Original LSTM  

 

 

Figure 25. Testing Results for the Original LSTM  

 

 

 

 

 



b. Increase the number of LSTM layers 

As shown in Figure 26, we increase the number of LSTM layers to three. 

 

Figure 26. Increase LSTM Layers to 3 

 

Observation: From Figure 27 and 28, the performance for the 3-layer LSTM decreases 

compared to the 2-layer LSTM, with testing accuracy dropping from 67.72% to 64.03%. 

It may indicate that 2 LSTM layers are enough to capture the semantic meanings behind 

the sentences. 3 LSTM layers may give a representation so abstract that some relevant 

features are omitted. 

 
Figure 27. Training Results for the 3-layer LSTM  

 

 

Figure 28. Testing Results for the 3-layer LSTM 



c. Use a uni-directional LSTM 

As shown in Figure 29, we replace the bi-directional LSTM with uni-directional LSTM. 

 

 

Figure 29. Convert to a Uni-directional LSTM 

 

Observation: From Figure 30 and 31, the performance for the uni-directional LSTM 

decreases compared to the bi-directional LSTM, with testing accuracy dropping from 

67.72% to 65.92%. It verifies that bi-directional LSTM may be more powerful in 

capturing the semantic meanings of the sentence because it considers both past and 

future words when processing the current word.  

 

 

Figure 30. Training Results for the Uni-directional LSTM 

 

 

Figure 31. Testing Results for the Uni-directional LSTM 



d. Change the embedding dimension 

As shown in Figure 32 and 33, we try a decreased embedding dimension of 50 and an 

increased embedding dimension of 200. 

 

Figure 32. Decrease Embedding Dimension to 50 

 

Figure 33. Increase Embedding Dimension to 200 

 

Observation: From Figure 34 and 35, decreasing the embedding dimension to 50 may 

be detrimental to the model performance, with testing accuracy dropping from 67.72% 

to 59.35%. It indicates that 50 embeddings may not be sufficient to represent a word’s 

semantic meanings accurately.  

 

From Figure 36 and 37, the training accuracies of the LSTM with an embedding 

dimension of 200 are much greater than the validation and testing accuracies. It may 

indicate that the model is suffering from overfitting. 

 



 

Figure 34. Training Results for the LSTM with Embedding Dimension = 50 

 

 

Figure 35. Testing Results for the LSTM with Embedding Dimension = 50 

 

 

Figure 36. Training Results for the LSTM with Embedding Dimension = 200 

 

 
Figure 37. Testing Results for the LSTM with Embedding Dimension = 200 



e. Disable the dropout during training 

As shown in Figure 38, we disable the three dropouts in the original model. 

 

 

Figure 38. Disable All Dropouts 

 

From Figure 39 and 40, there is a huge gap between the training accuracies and 

validation/testing accuracies when we disable the dropouts, suggesting our model is 

overfitting. It verifies that dropouts can efficiently alleviate the overfitting problems for 

complex models. 

 

 
Figure 39. Training Results for the LSTM with Dropout Disabled 

 

 

Figure 40. Testing Results for the LSTM with Dropout Disabled 



f. Conclusion  

By comparison, LSTM outperforms RNN greatly in sentiment analysis tasks. The best 

model in our experiment is a bi-directional 2-layer LSTM with embedding dimension 

= 100 and dropout enabled, which achieved an accuracy of 67.72% in the testing set. 

 

 


