EIE4122 Deep Learning and Deep Neural Networks Lab 2: RNN and LSTM for Text Analysis

HAO Jiadong (20084595d)

Recurrent Neural Network (RNN)

1. Data Preprocessing

a. Dataset used

The dataset, Large Movie Review Dataset, is for binary sentiment classification. In our experiment, to save training time, we only used 2780 records for both training and testing. We further split the 2780 training samples into a 70% training set and a 30% validation set to select the model with the best performance. Finally, Figure 1 shows the dataset splitting results.

Figure1. Dataset Splitting

b. Tokenization using spaCy

To enable our RNN to learn the sentences at word-level, we tokenize the sentences into smaller units called tokens using a tokenizer, en_core_web_sm, in spaCy library.

c. Build the vocabulary

To enable our model to take in the tokens, we give each token a unique one-hot vector.

For TEXT INPUT,

To reduce the number of one-hot-vectors, we only keep the most frequent 25,000 words and replace other encoding vectors with an unknown token denoted by <unk>. Additionally, to keep all sentences in a batch to have the same size in order to feed to the model in one run, we use an additional token pad> for padding. Hence, the total number of tokens for text input is 25,002.

For LABEL,

Since we only have two labels, positive and negative, we use 0 to represent negative labels and 1 to represent positive labels.

d. BucketIterator

We create BucketIterators to hold a batch of samples (batch size =64) to enable parallel processing. BucketIterator ensures sentences of similar length are grouped into the same batch, significantly reducing the padding efforts.

2. Model Architecture

Layer	Function
Embedding layer	Turn sparse one-hot vectors into dense
	vectors for dimensionality reduction.
	Words of similar meanings are closer in
	the dense vector space.
RNN layer	Based on the previous hidden state h(t-1)
	and the current word's dense vector,
	generate the current hidden state h(t).
Fully-connect linear layer	Take in the final hidden state and output
	the predicted possibility of positive class.

Table 1. Three Layers and Corresponding Functions

Figure 2. Overall Architecture of RNN

3. Model Training

a. SGD optimizer

stochastic gradient descent (SGD) optimizer with a learning rate of 0.001 is used to update all the parameters based on the gradients of the loss function with respect to the parameters.

b. Binary cross entropy with logits

Binary cross entropy with logits is adopted as the loss function. "nn.BCEWithLogitsLoss()" first applies a sigmoid function to the raw output of RNN and then calculates the loss using binary cross entropy.

The objective of the sigmoid function is to convert the unbound last hidden state of RNN to a value between 0 and 1 (referring to Figure 3) as the predicted possibility of the positive class.

The formula for cross-entropy loss is shown in Figure 4, where y represents the actual label (0 or 1), and p(y) represents the predicted possibility of the positive class.

$$H_p(q) = -\frac{1}{N} \sum_{i=1}^{N} y_i \cdot log(p(y_i)) + (1 - y_i) \cdot log(1 - p(y_i))$$

Figure 4. BCE Loss Formula

The main idea of cross-entropy loss is to penalize the predicted probability that deviates from the actual label. When the true label y = 1, the loss term is $-\log(p(y))$ as shown on the left of Figure 5. The model will impose a high penalty on those "wrong predictions" with p(y) close to 0 and a small penalty on those "correct predictions" with p(y) close to 1. When the true label y = 0, the loss term is $-\log(1-p(y))$ as shown on the right of Figure 5. The model will impose a high penalty on those "wrong predictions" with p(y)close to 1 and a small penalty on those "correct predictions" with p(y)close to 1 and a small penalty on those "correct predictions" with p(y) close to 0.

Figure 5. BCE Loss for y = 1 and y = 0

4. Model Evaluation and Modification

a. Original architecture

Observation: From Figure 6 and 7, the performance of the original model is very poor, with training, validation, and testing accuracy around 50%, like random guessing.

Epoch:	01 Epoch Time: Om 2s
	Train Loss: 0.697 Train Acc: 50.07%
	Val. Loss: 0.696 Val. Acc: 50.22%
Epoch:	02 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 49.90%
	Val. Loss: 0.696 Val. Acc: 50.22%
Epoch:	03 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.83%
	Val. Loss: 0.696 Val. Acc: 50.45%
Epoch:	04 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.32%
	Val. Loss: 0.697 Val. Acc: 50.33%
Epoch:	05 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 47.61%
	Val. Loss: 0.697 Val. Acc: 50.67%
Epoch:	06 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.35%
	Val. Loss: 0.697 Val. Acc: 46.09%
Epoch:	07 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.41%
	Val. Loss: 0.697 Val. Acc: 45.65%
Epoch:	08 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 47.69%
	Val. Loss: 0.697 Val. Acc: 46.21%
Epoch:	09 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.35%
	Val. Loss: 0.697 Val. Acc: 44.87%
Epoch:	10 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.17%
	Val. Loss: 0.697 Val. Acc: 45.65%

Figure 6. Training Results for the Original RNN Model

Test Loss: 0.697 | Test Acc: 49.68%

Figure 7. Testing Results for the Original RNN Model

b. Add one more RNN layer

As shown in Figure 8, we add one more RNN layer.

import	torch.nn as nn
class	RNN(nn.Module): definit(self, input_dim, embedding_dim, hidden_dim, output_dim):
	super()init()
	self.embedding = nn.Embedding(input_dim, embedding_dim) self.rnn1 = nn.RNN(embedding_dim, hidden_dim) self.rnn2 = nn.RNN(hidden_dim, hidden_dim) self.fc = nn.Linear(hidden_dim, output_dim)
	<pre>def forward(self, text): embedded = self.embedding(text) output1, h1 = self.rnn1(embedded) output2, h2 = self.rnn2(output1) return self.fc(h2.squeeze(0))</pre>

Figure 8. Add one more RNN Layer

Observation: From Figures 9 and 10, the performance of the revised model with two RNN layers is still unacceptable. Theoretically, an additional RNN layer will contribute to generating a more abstract representation of the sentences to capture the long-range dependencies and extract more nuanced features. The reason why the performance doesn't improve is discussed in section e (conclusion).

Epoch:	01 Epoch Time: Om 2s
	Train Loss: 0.698 Train Acc: 50.15%
	Val. Loss: 0.702 Val. Acc: 45.65%
Epoch:	02 Epoch Time: Om 1s
	Train Loss: 0.695 Train Acc: 50.62%
	Val. Loss: 0.700 Val. Acc: 45.54%
Epoch:	03 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 50.30%
	Val. Loss: 0.699 Val. Acc: 45.54%
Epoch:	04 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 50.62%
	Val. Loss: 0.698 Val. Acc: 45.42%
Epoch:	05 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.80%
	Val. Loss: 0.698 Val. Acc: 44.98%
Epoch:	06 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.43%
	Val. Loss: 0.697 Val. Acc: 45.09%
Epoch:	07 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.33%
	Val. Loss: 0.697 Val. Acc: 44.98%
Epoch:	08 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.55%
	Val. Loss: 0.697 Val. Acc: 45.20%
Epoch:	09 Epoch Time: Om 2s
	Train Loss: 0.693 Train Acc: 50.31%
	Val. Loss: 0.697 Val. Acc: 44.98%
Epoch:	10 Epoch Time: Om 2s
	Train Loss: 0.693 Train Acc: 50.40%
	Val. Loss: 0.697 Val. Acc: 45.09%

Figure 9. Training Results for RNN with Two Layers

Figure 10. Testing Results for RNN with Two Layers

c. Change the embedding dimension of the RNN

As shown in Figures 11 and 12, we increase the embedding dimension (the dimension of the dense vectors to be fed into the RNN) from 100 to 200 and 1000.

Figure 11. Increase the Embedding Dimension to 200

INPUT_DIM = 1en(TEXT.vc #EMBEDDING DIM = 100	ocab)		
EMBEDDING_DIM = 1000			
HIDDEN_DIM = 256 OUTPUT_DIM = 1			
mode1 = RNN(INPUT_DIM,	EMBEDDING_DIM,	HIDDEN_DIM,	OUTPUT_DIM)

Figure 12. Increase the Embedding Dimension to 1000

Observation: From Figure 13, 14, 15, 16, the performance of the revised models with increased embedding dimension is still unacceptable. Theoretically, more embedding dimension will provide richer semantic features to increase the performance. The reason why the performance doesn't improve is discussed in section e (conclusion).

Epoch:	01 Epoch Time: Om 3s
	Train Loss: 0.696 Train Acc: 49.77%
	Val. Loss: 0.689 Val. Acc: 54.13%
Epoch:	02 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 49.75%
	Val. Loss: 0.690 Val. Acc: 55.13%
Epoch:	03 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.72%
	Val. Loss: 0.691 Val. Acc: 49.89%
Epoch:	04 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 49.35%
	Val. Loss: 0.690 Val. Acc: 52.12%
Epoch:	05 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.12%
	Val. Loss: 0.690 Val. Acc: 50.11%
Epoch:	06 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.43%
	Val. Loss: 0.691 Val. Acc: 49.11%
Epoch:	07 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.78%
	Val. Loss: 0.691 Val. Acc: 49.33%
Epoch:	08 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 47.44%
	Val. Loss: 0.690 Val. Acc: 49.78%
Epoch:	09 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.23%
	Val. Loss: 0.690 Val. Acc: 54.24%
Epoch:	10 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.97%
	Val. Loss: 0.691 Val. Acc: 49.44%

Figure 13. Training Results for RNN with Embedding Dimension = 200

Test Loss: 0.694 | Test Acc: 49.07%

Figure 14. Testing Results for RNN with Embedding Dimension = 200

Epoch:	01 Epoch Time: Om 2s
	Train Loss: 0.694 Train Acc: 49.75%
	Val. Loss: 0.706 Val. Acc: 50.00%
Epoch:	02 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 49.47%
	Val. Loss: 0.707 Val. Acc: 50.11%
Epoch:	03 Epoch Time: Om 1s
	Train Loss: 0.695 Train Acc: 50.05%
	Val. Loss: 0.707 Val. Acc: 44.20%
Epoch:	04 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 48.22%
	Val. Loss: 0.708 Val. Acc: 44.75%
Epoch:	05 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 50.25%
	Val. Loss: 0.705 Val. Acc: 49.89%
Epoch:	06 Epoch Time: Om 1s
	Train Loss: 0.695 Train Acc: 48.69%
	Val. Loss: 0.705 Val. Acc: 44.20%
Epoch:	07 Epoch Time: Om 2s
	Train Loss: 0.694 Train Acc: 48.41%
	Val. Loss: 0.705 Val. Acc: 44.20%
Epoch:	08 Epoch Time: Om 2s
	Train Loss: 0.694 Train Acc: 49.99%
	Val. Loss: 0.707 Val. Acc: 44.75%
Epoch:	09 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 49.34%
	Val. Loss: 0.706 Val. Acc: 44.75%
Epoch:	10 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 50.16%
	Val. Loss: 0.704 Val. Acc: 44.42%

Figure 15. Training Results for RNN with Embedding Dimension = 1000

Figure 16. Testing Results for RNN with Embedding Dimension = 1000

d. Reduce the dimension of the word embeddings (vocabulary size)

As shown in Figures 17 and 18, we reduce the dimension of the word embeddings (vocabulary size) from 25,000 to 20,000 and 10,000.

Figure 18. Reduce the dimension of Word Embeddings to 10,000

Observation: From Figure 19, 20, 21, 22, the performance of the revised models with reduced dimension of word embeddings are unacceptable. The reason why the performance is poor is discussed in section e (conclusion).

Epoch:	01 Epoch Time: Om 1s
	Train Loss: 0.696 Train Acc: 50.28%
	Val. Loss: 0.696 Val. Acc: 48.55%
Epoch:	02 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 50.53%
	Val. Loss: 0.694 Val. Acc: 48.44%
Epoch:	03 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.70%
	Val. Loss: 0.693 Val. Acc: 48.77%
Epoch:	04 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.98%
	Val. Loss: 0.692 Val. Acc: 48.44%
Epoch:	05 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.28%
	Val. Loss: 0.692 Val. Acc: 48.77%
Epoch:	06 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 48.26%
	Val. Loss: 0.692 Val. Acc: 48.55%
Epoch:	07 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.85%
	Val. Loss: 0.692 Val. Acc: 48.55%
Epoch:	08 Epoch Time: Om 1s
	Train Loss: 0.694 Train Acc: 49.81%
	Val. Loss: 0.691 Val. Acc: 48.44%
Epoch:	09 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 50.55%
	Val. Loss: 0.691 Val. Acc: 48.55%
Epoch:	10 Epoch Time: Om 1s
	Train Loss: 0.693 Train Acc: 49.67%
	Val. Loss: 0.692 Val. Acc: 48.66%

Figure 19. Training Results for RNN with Reduced Vocabulary Size = 20000

Test Loss: 0.693 | Test Acc: 50.78%

Figure 20. Testing Results for RNN with Reduced Vocabulary Size = 20000

Epoch:	01 Epoch Time: Om	1s
	Train Loss: 0.693	Train Acc: 50.33%
	Val. Loss: 0.697	Val. Acc: 44.98%
Epoch:	02 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 50.25%
	Val. Loss: 0.696	Val. Acc: 45.31%
Epoch:	03 Epoch Time: Om	
	Train Loss: 0.693	Train Acc: 50.10%
	Val. Loss: 0.696	Val. Acc: 45.20%
Epoch:	04 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 50.43%
	Val. Loss: 0.696	Val. Acc: 44.64%
Epoch:	05 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 50.43%
	Val. Loss: 0.696	Val. Acc: 44.87%
Epoch:	06 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 49.40%
	Val. Loss: 0.696	Val. Acc: 45.09%
Epoch:	07 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 50.68%
	Val. Loss: 0.696	Val. Acc: 45.31%
Epoch:	08 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 50.14%
	Val. Loss: 0.696	Val. Acc: 44.75%
Epoch:	09 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 50.38%
	Val. Loss: 0.696	Val. Acc: 45.20%
Epoch:	10 Epoch Time: Om	ls
	Train Loss: 0.693	Train Acc: 49.49%
	Val. Loss: 0.696	Val. Acc: 44.87%

Figure 21. Training Results for RNN with Reduced Vocabulary Size = 10000

Test Loss: 0.693 | Test Acc: 51.13%

Figure 22. Testing Results for RNN with Reduced Vocabulary Size = 10000

e. Conclusion

From the above three modifications and results, the observation is that no matter how we fine-tune the model, the performance remains poor, with an accuracy of around 50%. It seems that the model learns nothing but makes random guesses.

One potential reason is that the basic RNN's capacity to do sentiment analysis is limited. For example, RNNs suffer from gradient vanishing problems and thus make it challenging to capture the long-term dependencies. We should try other more powerful models like LSTM to gain better performance.

Long Short-term Memory (LSTM)

Only the key improvements over the RNN model are highlighted in the following part.

1. Model Architecture

a. Pack the sequences

To enable the LSTM to process only the non-padded elements, we pack the padded sequences at the output of the embedding model before forwarding them to the LSTM, thus optimizing the memory and computation resources.

Layer	Function
Embedding layer	Turn sparse one-hot vectors into dense
	vectors for dimensionality reduction.
	Further, pack the padded sequences to
	ignore the paddings.
Bidirectional 2-layer LSTM	Take in packed embeddings and output
	the concatenation of the last forward and
	backward hidden states.
Fully-connect linear layer	Take in the concatenated hidden state and
	output the predicted probability of
	positive class.

b. Bidirectional Multi-Layer LSTM

Table 2. Three Layers and Corresponding Functions for LSTM

Figure 23. Bidirectional 2-Layer LSTM

c. Dropout

To prevent overfitting, we adopt a regularization technique called dropout. The main idea is to set the outputs of some units to zeros with a probability (0.5 in our experiment). By doing this, the network will not rely on a particular group of units too heavily and thus gain stronger generalization ability.

In our experiment, we use three dropouts, respectively, at the output of the embedding model, between two LSTM layers, and at the concatenated last hidden state of the bidirectional LSTM.

2. Model Training

a. Adam optimizer

We use an Adam optimizer to update the parameters rather than SGD. Unlike SGD, which updates all parameters with a fixed learning rate, Adam gives a lower learning rate for frequently-updated parameters and a higher for infrequently-updated parameters. By introducing this adaptive learning rate, Adam is more robust to the hyperparameter and more efficient than SGD.

3. Model Evaluation and Modification

a. Original architecture

Observation: From Figure 24 and 25, the bidirectional 2-layer LSTM significantly outperforms the previous RNN, with testing accuracy increasing from 49.68% (RNN) to 67.72% (LSTM).

Epoch:	01 Epoch Time: Om 4s
	Train Loss: 0.691 Train Acc: 53.08%
	Val. Loss: 0.672 Val. Acc: 61.83%
Epoch:	02 Epoch Time: Om 3s
	Train Loss: 0.653 Train Acc: 62.90%
	Val. Loss: 0.688 Val. Acc: 59.04%
Epoch:	03 Epoch Time: Om 3s
	Train Loss: 0.622 Train Acc: 66.19%
	Val. Loss: 0.648 Val. Acc: 63.84%
Epoch:	04 Epoch Time: Om 3s
	Train Loss: 0.582 Train Acc: 69.64%
	Val. Loss: 0.667 Val. Acc: 64.51%
Epoch:	05 Epoch Time: Om 4s
	Train Loss: 0.533 Train Acc: 73.55%
	Val. Loss: 0.630 Val. Acc: 67.97%
Epoch:	06 Epoch Time: Om 3s
	Train Loss: 0.517 Train Acc: 74.35%
	Val. Loss: 0.587 Val. Acc: 68.42%
Epoch:	07 Epoch Time: Om 3s
	Train Loss: 0.461 Train Acc: 77.73%
	Val. Loss: 0.623 Val. Acc: 72.66%
Epoch:	08 Epoch Time: 0m 4s
	Train Loss: 0.485 Train Acc: 76.60%
	Val. Loss: 0.550 Val. Acc: 74.44%
Epoch:	09 Epoch Time: Om 4s
	Train Loss: 0.405 Train Acc: 81.01%
	Val. Loss: 0.688 Val. Acc: 65.07%
Epoch:	10 Epoch Time: Om 4s
	Train Loss: 0.374 Train Acc: 83.49%
	Val. Loss: 0.708 Val. Acc: 65.07%

Figure 24. Training Results for the Original LSTM

Figure 25. Testing Results for the Original LSTM

b. Increase the number of LSTM layers

As shown in Figure 26, we increase the number of LSTM layers to three.

Figure 26. Increase LSTM Layers to 3

Observation: From Figure 27 and 28, the performance for the 3-layer LSTM decreases compared to the 2-layer LSTM, with testing accuracy dropping from 67.72% to 64.03%. It may indicate that 2 LSTM layers are enough to capture the semantic meanings behind the sentences. 3 LSTM layers may give a representation so abstract that some relevant features are omitted.

Epoch:	01 Epoch Time: Om 6s
	Train Loss: 0.692 Train Acc: 52.99%
	Val. Loss: 0.685 Val. Acc: 53.35%
Epoch:	02 Epoch Time: Om 6s
	Train Loss: 0.671 Train Acc: 59.42%
	Val. Loss: 0.664 Val. Acc: 60.04%
Epoch:	03 Epoch Time: Om 6s
	Train Loss: 0.640 Train Acc: 62.49%
	Val. Loss: 0.640 Val. Acc: 63.84%
Epoch:	04 Epoch Time: Om 6s
	Train Loss: 0.620 Train Acc: 66.97%
	Val. Loss: 0.626 Val. Acc: 66.63%
Epoch:	05 Epoch Time: Om 6s
	Train Loss: 0.693 Train Acc: 55.24%
	Val. Loss: 0.691 Val. Acc: 49.67%
Epoch:	06 Epoch Time: Om 6s
	Train Loss: 0.702 Train Acc: 48.91%
	Val. Loss: 0.706 Val. Acc: 49.44%
Epoch:	07 Epoch Time: Om 6s
	Train Loss: 0.697 Train Acc: 51.46%
	Val. Loss: 0.690 Val. Acc: 52.34%
Epoch:	08 Epoch Time: Om 6s
	Train Loss: 0.688 Train Acc: 52.39%
	Val. Loss: 0.674 Val. Acc: 55.36%
Epoch:	09 Epoch Time: Om 6s
	Train Loss: 0.689 Train Acc: 53.02%
	Val. Loss: 0.683 Val. Acc: 56.25%
Epoch:	10 Epoch Time: Om 6s
	Train Loss: 0.667 Train Acc: 58.54%
	Val. Loss: 0.670 Val. Acc: 59.15%

Figure 27. Training Results for the 3-layer LSTM

Test Loss: 0.636 | Test Acc: 64.03%

Figure 28. Testing Results for the 3-layer LSTM

c. Use a uni-directional LSTM

As shown in Figure 29, we replace the bi-directional LSTM with uni-directional LSTM.

Figure 29. Convert to a Uni-directional LSTM

Observation: From Figure 30 and 31, the performance for the uni-directional LSTM decreases compared to the bi-directional LSTM, with testing accuracy dropping from 67.72% to 65.92%. It verifies that bi-directional LSTM may be more powerful in capturing the semantic meanings of the sentence because it considers both past and future words when processing the current word.

Epoch:	01 Epoch Time: Om 2s	
	Train Loss: 0.693 Train Acc: 51.	19%
	Val. Loss: 0.688 Val. Acc: 53.	24%
Epoch:	02 Epoch Time: Om 1s	
	Train Loss: 0.685 Train Acc: 55.	17%
	Val. Loss: 0.684 Val. Acc: 55.	36%
Epoch:	03 Epoch Time: Om 1s	
	Train Loss: 0.674 Train Acc: 58.	84%
	Val. Loss: 0.681 Val. Acc: 57.	48%
Epoch:	04 Epoch Time: Om 1s	
	Train Loss: 0.650 Train Acc: 62.	72%
	Val. Loss: 0.661 Val. Acc: 60.	49%
Epoch:	05 Epoch Time: Om 2s	
	Train Loss: 0.630 Train Acc: 64.	10%
	Val. Loss: 0.635 Val. Acc: 66.	85%
Epoch:	06 Epoch Time: Om 2s	
	Train Loss: 0.592 Train Acc: 67.	73%
	Val. Loss: 0.628 Val. Acc: 63.	39%
Epoch:	07 Epoch Time: Om 2s	
	Train Loss: 0.572 Train Acc: 70.	92%
	Val. Loss: 0.624 Val. Acc: 65.	40%
Epoch:	08 Epoch Time: Om 1s	
	Train Loss: 0.555 Train Acc: 72.	49%
	Val. Loss: 0.628 Val. Acc: 66.	63%
Epoch:	09 Epoch Time: Om 1s	
	Train Loss: 0.496 Train Acc: 76.	27%
	Val. Loss: 0.659 Val. Acc: 68.	97%
Epoch:	10 Epoch Time: Om 1s	
	Train Loss: 0.460 Train Acc: 79.	66%
	Val. Loss: 0.753 Val. Acc: 65.	40%

Figure 30. Training Results for the Uni-directional LSTM

Figure 31. Testing Results for the Uni-directional LSTM

d. Change the embedding dimension

As shown in Figure 32 and 33, we try a decreased embedding dimension of 50 and an increased embedding dimension of 200.

Figure 32. Decrease Embedding Dimension to 50

Figure 33. Increase Embedding Dimension to 200

Observation: From Figure 34 and 35, decreasing the embedding dimension to 50 may be detrimental to the model performance, with testing accuracy dropping from 67.72% to 59.35%. It indicates that 50 embeddings may not be sufficient to represent a word's semantic meanings accurately.

From Figure 36 and 37, the training accuracies of the LSTM with an embedding dimension of 200 are much greater than the validation and testing accuracies. It may indicate that the model is suffering from overfitting.

Epoch:	01 Epoch Time: Om 3s
	Train Loss: 0.691 Train Acc: 53.12%
	Val. Loss: 0.686 Val. Acc: 57.25%
Epoch:	02 Epoch Time: Om 3s
	Train Loss: 0.677 Train Acc: 58.15%
	Val. Loss: 0.675 Val. Acc: 54.46%
Epoch:	03 Epoch Time: Om 3s
	Train Loss: 0.658 Train Acc: 60.45%
	Val. Loss: 0.657 Val. Acc: 61.94%
Epoch:	04 Epoch Time: Om 4s
	Train Loss: 0.659 Train Acc: 61.00%
	Val. Loss: 0.684 Val. Acc: 58.71%
Epoch:	05 Epoch Time: 0m 3s
	Train Loss: 0.671 Train Acc: 58.44%
	Val. Loss: 0.676 Val. Acc: 56.36%
Epoch:	06 Epoch Time: Om 3s
	Train Loss: 0.652 Train Acc: 62.53%
	Val. Loss: 0.672 Val. Acc: 59.26%
Epoch:	07 Epoch Time: 0m 3s
	Train Loss: 0.648 Train Acc: 63.22%
	Val. Loss: 0.696 Val. Acc: 53.24%
Epoch:	08 Epoch Time: 0m 4s
	Train Loss: 0.624 Train Acc: 64.75%
	Val. Loss: 0.672 Val. Acc: 61.50%
Epoch:	09 Epoch Time: Om 3s
	Train Loss: 0.603 Train Acc: 68.71%
	Val. Loss: 0.734 Val. Acc: 54.58%
Epoch:	10 Epoch Time: Om 3s
	Train Loss: 0.582 Train Acc: 69.01%
	Val. Loss: 0.677 Val. Acc: 59.60%

Figure 34. Training Results for the LSTM with Embedding Dimension = 50

Test Loss: 0.660 | Test Acc: 59.35%

Figure 35. Testing Results for the LSTM with Embedding Dimension = 50

Epoch:	01 Epoch Time: Om 4s
	Train Loss: 0.523 Train Acc: 73.90%
	Val. Loss: 0.625 Val. Acc: 70.42%
Epoch:	02 Epoch Time: Om 4s
	Train Loss: 0.475 Train Acc: 77.22%
	Val. Loss: 0.643 Val. Acc: 71.32%
Epoch:	03 Epoch Time: Om 4s
	Train Loss: 0.415 Train Acc: 81.13%
	Val. Loss: 0.670 Val. Acc: 71.88%
Epoch:	04 Epoch Time: Om 4s
	Train Loss: 0.378 Train Acc: 83.14%
	Val. Loss: 0.773 Val. Acc: 70.20%
Epoch:	05 Epoch Time: Om 4s
	Train Loss: 0.339 Train Acc: 85.09%
	Val. Loss: 0.746 Val. Acc: 66.63%
Epoch:	06 Epoch Time: Om 4s
	Train Loss: 0.313 Train Acc: 87.15%
	Val. Loss: 0.877 Val. Acc: 73.21%
Epoch:	07 Epoch Time: Om 4s
	Train Loss: 0.277 Train Acc: 88.00%
	Val. Loss: 0.753 Val. Acc: 71.21%
Epoch:	08 Epoch Time: Om 4s
	Train Loss: 0.222 Train Acc: 90.73%
	Val. Loss: 1.053 Val. Acc: 73.44%
Epoch:	09 Epoch Time: Om 4s
	Train Loss: 0.176 Train Acc: 93.40%
	Val. Loss: 0.853 Val. Acc: 76.45%
Epoch:	10 Epoch Time: Om 4s
	Train Loss: 0.188 Train Acc: 93.15%
	Val. Loss: 0.837 Val. Acc: 73.77%

Figure 36. Training Results for the LSTM with Embedding Dimension = 200

Test Loss: 0.711 | Test Acc: 65.08%

Figure 37. Testing Results for the LSTM with Embedding Dimension = 200

e. Disable the dropout during training

As shown in Figure 38, we disable the three dropouts in the original model.

Figure 38. Disable All Dropouts

From Figure 39 and 40, there is a huge gap between the training accuracies and validation/testing accuracies when we disable the dropouts, suggesting our model is overfitting. It verifies that dropouts can efficiently alleviate the overfitting problems for complex models.

Epoch:	01 Epoch Time: Om 4s
	Train Loss: 0.691 Train Acc: 52.57%
	Val. Loss: 0.682 Val. Acc: 54.02%
Epoch:	02 Epoch Time: Om 4s
	Train Loss: 0.620 Train Acc: 66.77%
	Val. Loss: 0.696 Val. Acc: 62.95%
Epoch:	03 Epoch Time: Om 4s
	Train Loss: 0.507 Train Acc: 76.24%
	Val. Loss: 0.746 Val. Acc: 62.50%
Epoch:	04 Epoch Time: Om 3s
	Train Loss: 0.336 Train Acc: 85.86%
	Val. Loss: 0.770 Val. Acc: 66.63%
Epoch:	05 Epoch Time: Om 3s
	Train Loss: 0.177 Train Acc: 93.53%
	Val. Loss: 1.041 Val. Acc: 67.52%
Epoch:	06 Epoch Time: Om 4s
	Train Loss: 0.088 Train Acc: 97.08%
	Val. Loss: 1.304 Val. Acc: 63.62%
Epoch:	07 Epoch Time: Om 3s
	Train Loss: 0.037 Train Acc: 98.89%
	Val. Loss: 1.488 Val. Acc: 61.16%
Epoch:	08 Epoch Time: Om 3s
	Train Loss: 0.016 Train Acc: 99.65%
	Val. Loss: 1.878 Val. Acc: 60.71%
Epoch:	09 Epoch Time: Om 4s
	Train Loss: 0.016 Train Acc: 99.50%
	Val. Loss: 1.921 Val. Acc: 65.18%
Epoch:	10 Epoch Time: Om 3s
	Train Loss: 0.022 Train Acc: 99.29%
	Val. Loss: 2.071 Val. Acc: 60.83%

Figure 39. Training Results for the LSTM with Dropout Disabled

Figure 40. Testing Results for the LSTM with Dropout Disabled

f. Conclusion

By comparison, LSTM outperforms RNN greatly in sentiment analysis tasks. The best model in our experiment is a bi-directional 2-layer LSTM with embedding dimension = 100 and dropout enabled, which achieved an accuracy of 67.72% in the testing set.