
EIE4122 Deep Learning and Deep Neural Networks

Lab 2: RNN and LSTM for Text Analysis

HAO Jiadong (20084595d)

Recurrent Neural Network (RNN)

1. Data Preprocessing

a. Dataset used

The dataset, Large Movie Review Dataset, is for binary sentiment classification. In our

experiment, to save training time, we only used 2780 records for both training and

testing. We further split the 2780 training samples into a 70% training set and a 30%

validation set to select the model with the best performance. Finally, Figure 1 shows

the dataset splitting results.

Figure1. Dataset Splitting

b. Tokenization using spaCy

To enable our RNN to learn the sentences at word-level, we tokenize the sentences into

smaller units called tokens using a tokenizer, en_core_web_sm, in spaCy library.

c. Build the vocabulary

To enable our model to take in the tokens, we give each token a unique one-hot vector.

For TEXT INPUT,

To reduce the number of one-hot-vectors, we only keep the most frequent 25,000 words

and replace other encoding vectors with an unknown token denoted by <unk>.

Additionally, to keep all sentences in a batch to have the same size in order to feed to

the model in one run, we use an additional token <pad> for padding. Hence, the total

number of tokens for text input is 25,002.

For LABEL,

Since we only have two labels, positive and negative, we use 0 to represent negative

labels and 1 to represent positive labels.

d. BucketIterator

We create BucketIterators to hold a batch of samples (batch size =64) to enable parallel

processing. BucketIterator ensures sentences of similar length are grouped into the

same batch, significantly reducing the padding efforts.

2. Model Architecture

Layer Function

Embedding layer Turn sparse one-hot vectors into dense

vectors for dimensionality reduction.

Words of similar meanings are closer in

the dense vector space.

RNN layer Based on the previous hidden state h(t-1)

and the current word’s dense vector,

generate the current hidden state h(t).

Fully-connect linear layer Take in the final hidden state and output

the predicted possibility of positive class.

Table 1. Three Layers and Corresponding Functions

Figure 2. Overall Architecture of RNN

3. Model Training

a. SGD optimizer

stochastic gradient descent (SGD) optimizer with a learning rate of 0.001 is used to

update all the parameters based on the gradients of the loss function with respect to the

parameters.

b. Binary cross entropy with logits

Binary cross entropy with logits is adopted as the loss function.

“nn.BCEWithLogitsLoss()” first applies a sigmoid function to the raw output of RNN

and then calculates the loss using binary cross entropy.

The objective of the sigmoid function is to convert the unbound last hidden state of

RNN to a value between 0 and 1 (referring to Figure 3) as the predicted possibility of

the positive class.

Figure 3. Curve for Sigmoid

The formula for cross-entropy loss is shown in Figure 4, where y represents the actual

label (0 or 1), and p(y) represents the predicted possibility of the positive class.

Figure 4. BCE Loss Formula

The main idea of cross-entropy loss is to penalize the predicted probability that deviates

from the actual label. When the true label y = 1, the loss term is -log(p(y)) as shown on

the left of Figure 5. The model will impose a high penalty on those “wrong predictions”

with p(y) close to 0 and a small penalty on those “correct predictions” with p(y) close

to 1. When the true label y = 0, the loss term is -log(1-p(y)) as shown on the right of

Figure 5. The model will impose a high penalty on those “wrong predictions” with p(y)

close to 1 and a small penalty on those “correct predictions” with p(y) close to 0.

Figure 5. BCE Loss for y = 1 and y = 0

4. Model Evaluation and Modification

a. Original architecture

Observation: From Figure 6 and 7, the performance of the original model is very poor,

with training, validation, and testing accuracy around 50%, like random guessing.

Figure 6. Training Results for the Original RNN Model

Figure 7. Testing Results for the Original RNN Model

b. Add one more RNN layer

As shown in Figure 8, we add one more RNN layer.

Figure 8. Add one more RNN Layer

Observation: From Figures 9 and 10, the performance of the revised model with two

RNN layers is still unacceptable. Theoretically, an additional RNN layer will contribute

to generating a more abstract representation of the sentences to capture the long-range

dependencies and extract more nuanced features. The reason why the performance

doesn’t improve is discussed in section e (conclusion).

Figure 9. Training Results for RNN with Two Layers

Figure 10. Testing Results for RNN with Two Layers

c. Change the embedding dimension of the RNN

As shown in Figures 11 and 12, we increase the embedding dimension (the dimension

of the dense vectors to be fed into the RNN) from 100 to 200 and 1000.

Figure 11. Increase the Embedding Dimension to 200

Figure 12. Increase the Embedding Dimension to 1000

Observation: From Figure 13, 14, 15, 16, the performance of the revised models with

increased embedding dimension is still unacceptable. Theoretically, more embedding

dimension will provide richer semantic features to increase the performance. The

reason why the performance doesn’t improve is discussed in section e (conclusion).

Figure 13. Training Results for RNN with Embedding Dimension = 200

Figure 14. Testing Results for RNN with Embedding Dimension = 200

Figure 15. Training Results for RNN with Embedding Dimension = 1000

Figure 16. Testing Results for RNN with Embedding Dimension = 1000

d. Reduce the dimension of the word embeddings (vocabulary size)

As shown in Figures 17 and 18, we reduce the dimension of the word embeddings

(vocabulary size) from 25,000 to 20,000 and 10,000.

Figure 17. Reduce the Dimension of Word Embeddings to 20,000

Figure 18. Reduce the dimension of Word Embeddings to 10,000

Observation: From Figure 19, 20, 21, 22, the performance of the revised models with

reduced dimension of word embeddings are unacceptable. The reason why the

performance is poor is discussed in section e (conclusion).

Figure 19. Training Results for RNN with Reduced Vocabulary Size = 20000

Figure 20. Testing Results for RNN with Reduced Vocabulary Size = 20000

Figure 21. Training Results for RNN with Reduced Vocabulary Size = 10000

Figure 22. Testing Results for RNN with Reduced Vocabulary Size = 10000

e. Conclusion

From the above three modifications and results, the observation is that no matter how

we fine-tune the model, the performance remains poor, with an accuracy of around 50%.

It seems that the model learns nothing but makes random guesses.

One potential reason is that the basic RNN’s capacity to do sentiment analysis is limited.

For example, RNNs suffer from gradient vanishing problems and thus make it

challenging to capture the long-term dependencies. We should try other more powerful

models like LSTM to gain better performance.

Long Short-term Memory (LSTM)

Only the key improvements over the RNN model are highlighted in the following part.

1. Model Architecture

a. Pack the sequences

To enable the LSTM to process only the non-padded elements, we pack the padded

sequences at the output of the embedding model before forwarding them to the LSTM,

thus optimizing the memory and computation resources.

b. Bidirectional Multi-Layer LSTM

Layer Function

Embedding layer Turn sparse one-hot vectors into dense

vectors for dimensionality reduction.

Further, pack the padded sequences to

ignore the paddings.

Bidirectional 2-layer LSTM Take in packed embeddings and output

the concatenation of the last forward and

backward hidden states.

Fully-connect linear layer Take in the concatenated hidden state and

output the predicted probability of

positive class.

Table 2. Three Layers and Corresponding Functions for LSTM

Figure 23. Bidirectional 2-Layer LSTM

c. Dropout

To prevent overfitting, we adopt a regularization technique called dropout. The main

idea is to set the outputs of some units to zeros with a probability (0.5 in our experiment).

By doing this, the network will not rely on a particular group of units too heavily and

thus gain stronger generalization ability.

In our experiment, we use three dropouts, respectively, at the output of the embedding

model, between two LSTM layers, and at the concatenated last hidden state of the

bidirectional LSTM.

2. Model Training

a. Adam optimizer

We use an Adam optimizer to update the parameters rather than SGD. Unlike SGD,

which updates all parameters with a fixed learning rate, Adam gives a lower learning

rate for frequently-updated parameters and a higher for infrequently-updated

parameters. By introducing this adaptive learning rate, Adam is more robust to the

hyperparameter and more efficient than SGD.

3. Model Evaluation and Modification

a. Original architecture

Observation: From Figure 24 and 25, the bidirectional 2-layer LSTM significantly

outperforms the previous RNN, with testing accuracy increasing from 49.68% (RNN)

to 67.72% (LSTM).

Figure 24. Training Results for the Original LSTM

Figure 25. Testing Results for the Original LSTM

b. Increase the number of LSTM layers

As shown in Figure 26, we increase the number of LSTM layers to three.

Figure 26. Increase LSTM Layers to 3

Observation: From Figure 27 and 28, the performance for the 3-layer LSTM decreases

compared to the 2-layer LSTM, with testing accuracy dropping from 67.72% to 64.03%.

It may indicate that 2 LSTM layers are enough to capture the semantic meanings behind

the sentences. 3 LSTM layers may give a representation so abstract that some relevant

features are omitted.

Figure 27. Training Results for the 3-layer LSTM

Figure 28. Testing Results for the 3-layer LSTM

c. Use a uni-directional LSTM

As shown in Figure 29, we replace the bi-directional LSTM with uni-directional LSTM.

Figure 29. Convert to a Uni-directional LSTM

Observation: From Figure 30 and 31, the performance for the uni-directional LSTM

decreases compared to the bi-directional LSTM, with testing accuracy dropping from

67.72% to 65.92%. It verifies that bi-directional LSTM may be more powerful in

capturing the semantic meanings of the sentence because it considers both past and

future words when processing the current word.

Figure 30. Training Results for the Uni-directional LSTM

Figure 31. Testing Results for the Uni-directional LSTM

d. Change the embedding dimension

As shown in Figure 32 and 33, we try a decreased embedding dimension of 50 and an

increased embedding dimension of 200.

Figure 32. Decrease Embedding Dimension to 50

Figure 33. Increase Embedding Dimension to 200

Observation: From Figure 34 and 35, decreasing the embedding dimension to 50 may

be detrimental to the model performance, with testing accuracy dropping from 67.72%

to 59.35%. It indicates that 50 embeddings may not be sufficient to represent a word’s

semantic meanings accurately.

From Figure 36 and 37, the training accuracies of the LSTM with an embedding

dimension of 200 are much greater than the validation and testing accuracies. It may

indicate that the model is suffering from overfitting.

Figure 34. Training Results for the LSTM with Embedding Dimension = 50

Figure 35. Testing Results for the LSTM with Embedding Dimension = 50

Figure 36. Training Results for the LSTM with Embedding Dimension = 200

Figure 37. Testing Results for the LSTM with Embedding Dimension = 200

e. Disable the dropout during training

As shown in Figure 38, we disable the three dropouts in the original model.

Figure 38. Disable All Dropouts

From Figure 39 and 40, there is a huge gap between the training accuracies and

validation/testing accuracies when we disable the dropouts, suggesting our model is

overfitting. It verifies that dropouts can efficiently alleviate the overfitting problems for

complex models.

Figure 39. Training Results for the LSTM with Dropout Disabled

Figure 40. Testing Results for the LSTM with Dropout Disabled

f. Conclusion

By comparison, LSTM outperforms RNN greatly in sentiment analysis tasks. The best

model in our experiment is a bi-directional 2-layer LSTM with embedding dimension

= 100 and dropout enabled, which achieved an accuracy of 67.72% in the testing set.

